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Abstract:  This paper investigates an MHD thermal boundary layer flow over a vertical plate with magnetic field intensity, 

electrical conductivity and convective surface boundary conditions. The governing nonlinear partial differential 

equations is transformed into a set of coupled non-linear ordinary differential equations by using the usual 

similarity transformation and the resulting coupled nonlinear ordinary differential equations are solved numerically 

by using Runge-Kutta fourth order method with shooting technique. The results show that the fluid temperature 

increases with increase in magnetic field intensity and biot numbers but decreases with increase in Prandtl number. 

Fluid velocity increases with increase in magnetic fluid intensity and decreases with increase in Grashof or biot 

number.  An increase in Prandtl number slows down the rate of thermal diffusion within the boundary layer. The 

skin friction and the rate of heat transfer at the surface increases with increase in local Grashof number, electrical 

conductivity parameter and convective surface heat transfer parameter. 
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Introduction 

The study of heat transfer is an integral part of natural 

convection flow and a class of boundary layer theory. The 

quantity of heat transferred is highly dependent on the fluid 

motion within the boundary layer. Convective heat transfer 

studies are very important in processes involving high 

temperatures such as gas turbines, nuclear plants, thermal 

energy storage, etc. Thesolution for the laminar boundary 

layer problem on a horizontal flat plate was obtained by 

Blasius (1908) and since then it has been a subject of current 

research. Cortell (2005) in his work presented a numerical 

solution of the Classical Blasius Flat-Plate Problem using a 

Runge-Kutta algorithm for higher order initial value problem. 

He (2003) worked on a simple perturbation approach to 

blasius equation. In his paper, he coupled the iteration method 

with the perturbation method to solve the well-known Blasius 

equation. Bataller (2008) presented a numerical solution for 

the combined effects of thermal radiation and convective 

surface heat transfer on the laminar boundary layer about a 

flat-plate in a uniform stream of fluid (Blasius flow) and about 

a moving plate in a quiescent ambient fluid. 

 The study of an incompressible viscous and electrically 

conducting fluid in the presence of a uniform transverse 

magnetic field was investigated by Watunade and Pop (1994). 

Shrama and Gurminder (2010) looked at the effect of 

temperature dependent electrical conductivity on steady 

natural convection flow of a viscous incompressible low 

Prandtl (Pr<<1) electrically conducting fluid along an 

isothermal vertical non-conducting plate in the presence of 

transverse magnetic field and exponentially decaying heat 

generation. Aziz (2009) investigated a similarity solution for 

laminar thermal boundary layer over a flat-plate with a 

convective surface boundary condition. Makinde and Sibanda 

(2008) conducted a study on magneto hydrodynamic mixed 

convective flow and heat and mass transfer past a vertical 

plate in a porous medium with constant wall suction. 

Makinde (2009) studied analysis of non-Newtonian reactive 

flow in a cylindrical pipe. Cortell (2008) investigated a 

similarity solutions for flow and heat transfer of a quiescent 

fluid over a nonlinearly stretching surface. 

Makinde and Olanrewaju (2010) conducted a study on the 

effects of buoyancy force on thermal boundary layer over a 

vertical plate with convective surface boundary conditions. 

This paper extends the work of Makinde and Olanrewaju 

(2010) on MHD thermal boundary layer flow over a vertical 

plate with magnetic field intensity, electrical conductivity and 

convective surface boundary conditions. The numerical 

solutions of the resulting momentum and the thermal 

similarity equations are reported for representative values of 

thermo physical parameters characterizing the fluid flow. 

 

Materials and Methods 

Consider a two-dimensional steady incompressible fluid 

flow coupled with heat transfer by convection over a vertical 

plate. A stream of cold fluid at temperature 𝑇∞ moving over 

the right surface of the plate with a uniform velocity 𝑈∞ while 

the left surface of the plate is heated by convection from a hot 

fluid at temperature𝑇𝑓, which provides a heat transfer 

coefficient ℎ𝑓 (Fig. 2.1) .The x-axis is taken along the plate 

and y-axis is normal to the plate. Magnetic field of intensity 𝐵𝑜 

is applied in the y- direction. It is assumed that the external 

field is zero. Incorporating the Boussinesq’s approximation 

within the boundary layer, the governing equations of 

continuity, momentum and energy equations according to 

Makinde and Olanrewaju (2010) are respectively given as: 
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Where: u and v are the x(along the plate) and the y(normal 

to the plate) components of the velocity, respectively; g  is the 

acceleration due to gravity; x, y are the Cartesian coordinates, 

𝐵0 is the Magnetic field intensity, 𝛽  is the  coefficient of 

thermal expansion, 𝜌  is the density of the fluid, 𝜈  is the 

Kinematic viscosity, 𝛼  is the coefficient of thermal 

conductivity, T is the temperature of the fluid, 𝜎∗ is the 

electrical conductivity and it is variable with temperature as 

given below  

𝜎∗ =
𝜎

1+𝜀𝜃
     (4) 

𝜀 is the  electrical conductivity parameter. All prime symbols 

denotes differentiation with respect to   

        The velocity boundary conditions can be expressed as: 

𝑢(𝑥, 0) = 𝑣(𝑥, 0) = 0  (5) 

𝑢(𝑥,∞) =  𝑈∞   (6) 
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The boundary conditions at the plate surface and far into the 

cold fluid may be written as: 

−𝑘
𝜕𝑇

𝜕𝑦
(𝑥, 0) = ℎ𝑓[𝑇𝑓 − 𝑇(𝑥, 0)]  (7) 

𝑇(𝑥,∞) = 𝑇∞   (8) 

                    −𝑘
𝜕𝑇

𝜕𝑦
= ℎ𝑓[𝑇𝑓 − 𝑇]g 

                                 𝑢 = 𝑜 T 

                                               𝑣 = 𝑜𝑢   
 

 
Fig. 1: Flow Configuration and coordinate system 

 

 

Introducing the stream function ψ(x,y) such that  

 

 

Where:  (𝑥, 𝑦) = 𝑥√
𝑈∞𝑉

𝑥
𝑓(𝜂),    𝑈∞ = 𝑎𝑥   (10) 

The similarity variable   ,  dimensionless stream function

)(f   and temperature )( are given as  

𝜂 = 𝑦√
𝑈∞

𝑣𝑥 
,𝑢 = 𝑎𝑥𝑓 ′(𝜂),𝑣 = −√𝑎𝑣𝑓(𝜂), 𝜃 =

𝑇 –𝑇∞

𝑇𝑓 −𝑇∞
     (11) 

 

Thus, the continuity equation (1) is satisfied with u  and v  of 

equations (11). Using (11), equations (2) and (3) are 

transformed into a set of coupled non-linear ordinary 

differential equation as  

  𝑓 ′′′(𝜂) − 𝑓′(𝜂)2 + 𝑓 (𝜂) 𝑓” (𝜂) − 
𝑀

1+ 𝜀𝜃
𝑓 ′(𝜂) + 𝐺𝑟 𝜃(𝜂) =

0 (12) 

        𝜃”(𝜂) +  𝑃𝑟 𝑓(𝜂)𝜃′(𝜂) = 0 (13) 

 

The boundary conditions (5), (6), (7) and (8) reduced to   

𝑓(0) = 𝑓 ′ (0) = 0,𝑓 ′(𝜂) = 1    𝑎𝑠 𝜂 →  ∞  (14) 

 𝜃′(0) =  −𝐵𝔦 [1– 𝜃(𝑥, 0)] ,𝜃 (∞) = 0 (15) 

Where: 𝑮𝒓 =
𝑔𝛽(𝑇𝑓 −𝑇∞)

𝑎𝑥2  is the dimensionless Grashof number, 

𝑀 =
𝜎𝛽𝑜2

𝜌𝑎
is the magnetic parameter,  𝑃𝑟 =  

𝑣

𝛼
  is the Prandtl 

number, Bi =   
ℎ

𝑘
√

𝑣

𝑎
is the Biot number and 𝜀  is the electrical 

conductivity parameter. 

 

It is assumed that equations (12) and (13) have a similarity 

solution where the parameters  𝐺𝑟 and  𝐵𝔦 are defined as 

constants. Solving the governing boundary layer equations 

(12) and (13) with the boundary conditions (14) and (15) 

numerically using Runge-Kutta fourth order method along 

with shooting technique and implemented on maple 17. The 

step size of 0.001 is used to obtain the numerical solution 

correct to four decimal places as the criterion of the 

convergence. 

 

Results and Discussion 

Numerical calculations have been carried out for different 

values of the thermo-physical parameters controlling the fluid 

dynamics in the flow region.  

Table 1 shows the comparison of Makinde’s work (2010) with 

the present work for Prandtl number Pr=0.72 and it is 

noteworthy that there is a perfect agreement in the absence of 

Grashof number.  

 

Table 1: Computations showing comparison of the 

Makinde (2010) and the present result 

Bi 

M = Gr = 0 and Pr =0.72 

Makinde 2010 Present  Work 

-θ'(0) θ(0) -θ'(0) θ(0) 

0.05 0.0428 0.1447 0.0428 0.1447 

0.10 0.0747 0.2528 0.0747 0.2528 

0.20 0.1139 0.4035 0.1139 0.4035 

0.40 0.1700 0.5750 0.1700 0.5750 

0.60 0.1981 0.6699 0.1981 0.6699 

0.80 0.2159 0.7302 0.2159 0.7302 

1.00 0.2282 0.7718 0.2282 0.7718 

5.00 0.2791 0.9442 0.2791 0.9442 

10.00 0.2871 0.9713 0.2871 0.9713 

20.00 0.2913 0.9854 0.2913 0.9854 

 

 

The graphs (Figs. 2 – 11) below show the velocity and the 

temperature profiles at various parameters values. 

In Figs. 6, 8 and 10, it is observed that the skin-friction and the 

rate of heat transfer at the plate surface increases with an 

increase in local Grashof number Gr, electrical conductivity 

parameter 𝜀 and convective surface heat transfer parameter Bi. 

It is also observed that for values of Gr > 0 as in Fig. 7 there is 

decrease in the temperature profile which corresponds to the 

cooling problem. The cooling problem is often encountered in 

engineering applications; for example, in the cooling of 

electronic components and nuclear reactors. 
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Fig. 2: Velocity profile for Pr 
 

 
Fig. 3: Temperature profile for Pr 

 

 
Fig. 4: Velocity profile for M 

 

 

 
Fig. 5: Temperature profile for M 

 
Fig. 6: Velocity profile for Gr 

 

 

 
Fig. 7: Temperature profile for Gr 
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However, in Figs. 2 and 4, an increase in the Prandtl number 

Pr and magnetic field parameter M decreases the skin-friction 

but increases the rate of heat transfer at the plate surface. This 

is attributed to the fact that as the Prandtl number decrease, the 

thermal boundary layer thickness increases, causing reduction 

in the temperature gradient 𝜃ꞌ(0) at the surface of the plate. In 

Fig. 3, the temperature gradient reduces at the surface because 

low Prandtl number has high thermal conductivity, causing the 

fluid to attain higher temperature thereby reducing the heat 

flux at the surface. Moreover, for such low Prandtl number, 

the velocity boundary layer is inside the thermal boundary 

layer and its thickness reduces as Prandtl number decreases 

and so the fluid motion is confined in more and more thinner 

layer near the surface and thereby experiencing drag increase 

(skin-friction) by the fluid. In other words there is more 

straining motion inside velocity boundary layer resulting in the 

increase of skin-friction coefficient. 

 

 
Fig. 8: Velocity profile for 𝜺 

 

 

 
Fig. 9: Temperature profile for 𝜺 

 

 

 
Fig. 10: Velocity profile for Bi 

 

 

 

Fig. 11: Temperature profile for Bi 

 

 

In Figs. 2, 4, 6, 8 and 10, it is observed that the fluid velocity 

is zero at the plate surface and increases gradually away 

from the plate towards the free stream value satisfying the 

boundary conditions. Also, Figs. 3, 5, 7, 9 and 11 show that 

the fluid temperature is maximum at the plate surface and 

decreases exponentially to zero value far away from the 

plate satisfying the boundary conditions.  

 

Conclusion 

This work investigates an MHD thermal boundary layer flow 

over a vertical plate with magnetic field intensity, electrical 

conductivity and convective surface boundary conditions. 

From the numerical solutions and graphical representations, 

increasing the Prandtl number and the Grashof number tend to 

reduce the thermal boundary layer thickness. Fluid 

temperature increases with increase in magnetic field intensity 

and decreases with increase in electrical conductivity 

parameter. Fluid velocity increases with increase in electrical 

conductivity parameter while it decreases with increase in 

magnetic field intensity. 
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Thermal boundary layer thickness increases with an increase 

in biot numbers iB  and decreases with an increase in Grashof 

(Gr) and Prandtl (Pr) numbers. Thus, convective surface heat 

transfer enhances thermal diffusion while an increase in the 

Prandtl number slows down the rate of thermal diffusion 

within the boundary layer. Fluid temperature increases due to 

increase in magnetic field intensity while it decreases due 

increase or decrease in electrical conductivity parameter. 
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